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Abstract--A promising method to describe the fluid dynamics of highly loaded particle flows is the 
Eulerian representation. In this approach, the solid phase is treated as a continuum, although physically 
it consists of individual particles. This is possible by using physical models derived from the kinetic theory 
of granular flow. Central to these models is the so-called granular temperature, representing the specific 
fluctuating kinetic energy of the particles. In this paper, several forms proposed for these models are 
summarized and different descriptions of granular temperature are investigated. Furthermore, an 
alternative approach derived from soil mechanics is tested. Measurements of a two-dimensional bubbling 
bed found in literature are finally used to verify the results. © 1997 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Gas-solid multiphase systems can be found in many applications of the chemical and power 
industry. Computer simulations are turning out to be a powerful tool to understand and design 
such processes. In case of high solid loadings, e.g. in fluidized beds, the simulation procedure should 
be based on the Eulerian approach, which is the subject of this paper. 

The development of the Eulerian approach including kinetic theory for granular flows has started 
already in the 1980s by Savage and Jeffrey (1981) and others. However, the improvement of 
computer power in the present decade was needed to allow the simulation of actual gas-solid flows. 
This induced interest and the basic theory was further developed, e.g. by Ding and Gidaspow 
(1990), Balzer and Simonin (1993), and Syamlal et al. (1993). Although there already exist several 
publications on this subject, a comparison of the different approaches, including a verification of 
the resulting flow patterns with measurements, is still missing. The present paper tries to contribute 
to this task. 

In contrast to the Lagrangian approach, which considers each particle separately, in the Eulerian 
approach all particles in a computational cell are handled as a continuum. Thus, the gas and solid 
phases can be described by similar mass and momentum balances. These balances are presented 
in section 2.1; their coupling by a drag function in section 2.2. The physical models needed to treat 
the solid phase as a continuous fluid are discussed in section 2.3. These models require the granular 
temperature as a parameter. Hence, different approaches to determining this parameter are 
investigated in section 2.4. The solution procedure is briefly described in section 3.1, followed in 
section 3.2 by a presentation of the simulations performed, including a comparison with measured 
data. 

2. BASIC EQUATIONS 

2.1. The Eulerian balances 

The accumulation of mass in each phase is balanced by the convective mass fluxes (i = gas, 
solids): 

~--t (E,p,) + v.(E,p,v,)=o, [1] 

where E, is the volume fraction, p, the density, and v, the mean velocity vector. 
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For the investigations described in this paper, mass exchange between the phases, e.g. due to 
pyrolysis or combustion, is not considered. According to Newton's second law, for each phase the 
change of momentum equalizes the net force on a domain. In gas-solid fluidized beds the forces 
include: 

• Viscous force V.~, (7 describes the viscous stress tensor) 
• Body force eipig 
• Solid pressure force Vp* (solid phase) 
• Static pressure force e~Vp 
• Interphase force (drag) (fl.(vG-Vs) fl is the interphase drag force). 

Other forces, such as added mass effect, lift force, and Basset force, can assumed to be negligible 
(Albr~ten 1982; Anderson 1991). Thus, one obtains the momentum balances of the two phases: 
solids: 

~-~ (espsVs) + V'(espsVsVs)= V ' ~  +espsg - Vp~ - esVp + fl'(VG--Vs), [2] 

gas: 

~'-T (EGpGvG) -t- V'(egpGVGVG) = V'~G + EGpGg -- EGVp -- fl "(Vc, -- VS) [3] 

with 

~,, = 2#* D~ + (2"  - -23 be*), tr(D,=)I [4] 

and 

[vv, + [5] 

With EG = 1 and /~ = 0 [3] is commonly called the Navier-Stokes equation. 
This set of equations with the static pressure p appearing in the momentum equation of both 

phases is used by most of the researchers working on Eulerian simulation of two phase flows, e.g. 
Ding and Gidaspow (1990), Balzer and Simonin (1993), Syamlal et al. (1993), LSfstrand et al. 
(1995). An alternative approach was proposed by Bouillard et al. (1989). They claimed that [2] may 
be numerically unstable because the problem is ill-posed. This could be avoided if the static pressure 
term is taken out of the solid phase momentum balance and put completely into the gas phase 
momentum balance. To satisfy Archimedes' principle they had to increase the drag term. This led 
t o :  

solids: 

~t (espsvs) + V'(esPsVsVs) = V ' ~  + espsg -- Vps* + [J" (vG-- Vs), 
EG 

[61 

gas: 

R 
(EGpGVG) + V'(Ec, PGVGVG)= V'~d +eGPag -- Vp -- --e "(VG--Vs). ~t eG 

[7] 

The set of momentum balances described by [2] and [3], has been called Hydrodynamic Model A, 
and the alternative, [6] and [7], Hydrodynamic Model B. The differences resulting from this 
modification are discussed in section 3.2.2. below. 
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2.2. Interphase force 

In order to couple the two momentum balances, a model for the interphase force is required. 
For the simulations presented in this paper, the drag function of Syamlal et al. (1993) is used. It 
is based on results of Richardson and Zaki (1954), Dalla Valle (1948), and Garside and A1-Dibouni 
(1977) 

3 -  .EsE~p~ , --Vsl. # = ~ o  ~--- -~- .  jvo 

The drag coefficient Co is evaluated from 

[8] 

CD= 0.63+ . ~/ Re} [9] 

with 

Vr= ½(a-O.O6 Re + x/(O.O6 Re)Z + O.12 R e ( 2 b - a )  + a 2 ) [lO] 

a = E~ '4 [11] 

J'0.8E~ 28 if Es ~> 0.15 [12] 
b = ~  E~65 i fEs<0 .15  

and the Reynolds number defined as 

Re - dsp~'lvc- Vs] [ 13] 

Alternative formulae have been proposed by Ding and Gidaspow (1990), and Di Felice (1994) and 
give similar results. An equation of Ma and Ahmadi (1990) agrees in the dilute region but differs 
in the dense regime. These models are compared in Boemer et al. (1995) and L6fstrand et al. (1995). 
They are applicable if the distribution of particles in a computational cell can be assumed to be 
homogeneous, e.g. in bubbling fluidized beds, whereas modifications are needed to account for 
clusters smaller than a computational cell, e.g. in circulating fluidized beds (O'Brien and Syamlal 
1993). 

2.3. Solid phase properties 
In order to adapt the Navier-Stokes equation originally derived for a continuous fluid, physical 

models are required to describe: 

• the solid pressure p* = ps'Es 
• the solid bulk viscosity 2* = 2s'Es 
• the solid shear viscosity ps* = ps'Es. 

Several empirical approaches have been developed which can be used under certain conditions (see, 
e.g. Massoudi et al. 1992; Dasgupta et al. 1994). Furthermore, there exists an alternative approach 
called the kinetic theory of granular flows. Since this theory makes a general description of the 
occurring phenomena possible, it should be preferred to the empirical approaches. It is based on 
the kinetic theory of gases (Chapman and Cowling 1970) and was developed mainly by Savage 
and Jeffrey (1981), Jenkins and Savage (1983), and Lun et al. (1984). The macroscopic behaviour 
of the solid phase is thus described by statistical expressions of collisions and fluctuating motions 
of the particles. By means of this theory the normal forces due to particle interactions can be 
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expressed as solid pressure and bulk viscosity, and the tangential forces are summarized in a term 
called shear viscosity. The most important restrictions of this theory are: 

• spherical, smooth, and nearly elastic particles 
• identical particles (diameter, density, restitution coefficient) 
• enough particles to allow the utilisation of the laws of statistical mechanics 
• binary collisions. 

The resulting models are listed below, a more detailed discussion is given in Boemer et al. (1995). 
2.3. I. Solid pressure. The solid pressure represents the normal force due to particle interactions 

and can be calculated from Lun et al. (1984) 

p* = psEs = Esps®s'(1 + 2g0cs" (1 + e)). [14] 

The radial distribution function go and granular temperature ®s are discussed below. 
2.3.2. Solid bulk viscosity. The bulk viscosity is a measure of the resistance of a fluid to 

compression. Lun et al. (1984) proposed a formula which is commonly used 

2* = 2ses = ~E~psdsgo'(l+e)" 19/--~_s. [15] 

2.3.3. Solid shear viscosity. There is general agreement in the literature on how to express the 
solid pressure and bulk viscosity but different expressions for the shear viscosity are used. It is 
difficult to discriminate between these different models since few detailed measurements exist. 
However, the models differ mainly in the dilute region (say, Cs < 0.3) which is of minor importance 
in bubbling fluidized beds. The model of Gidaspow et al. (1992) comes closest to the measurements 
of Gidaspow et al. (1989) and is tested here 

. ,  ~ ' 96 psdpx/®s[  32 #* = ItsEs=4 E~psdsg°'(l+e)'~/ --~+ -~-e-'~'gu 1 +~g0Es'(1 +e)  [16] 

For Es ~ 0 it is equal to the expression given by Chapman and Cowling (1970). As discussed in 
Boemer et al. (1995), alternatives were proposed by Syamlal et al. (1993) and Balzer and Simonin 
(1993). The latter is also included in one of the test cases presented below, it reads 

Os.(psEs) 2 l~* 4 E~p~dsgo.( +e).  + [17] 

( l + e ) ' ( 3 - e )  6 / ~ 6 ® s  
2fl+psE~ 5 d~ ~ /  ~z 

Both equations give similar results in the dense region but may differ in the dilute region. 
2.3.4. Extreme regimes: dense and dilute. If the solid phase is in the packed bed state (es -~ 0.6), 

the stresses are dominated by interparticle friction rather than by collisions and fluctuating motion. 
Jackson (1983) investigated soil mechanics phenomena and proposed to use the stress tensor of 
Sokolovski (1965) for a granular material which is about to yield. This tensor is (here, for simplicity, 
the two-dimensional version) 

{a.(1 +sin q~ cos 27) -cr.(sin gb sin 27) "] 
= \ --a.(sin q5 sin 2~) cr.(l - s i n  ck cos 2";)/I [18] 

and fulfils the Coulomb yield criterion (Jackson 1983). It contains the angle of internal friction ~b 
(Johnson and Jackson (1987) proposed q~ = 25 °) and the angle 7 between the direction of the major 
principal stress and the x-axis. The latter can be derived from geometrical considerations, cr is the 
normal stress component which is the solid pressure in our case. Syamlal et al. (1993) showed that 
this stress tensor [18] is equal to that used in the momentum balance of the solid phase [2] 

V . ~ -  Vp~* - V'~7~.~ [191 
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if the following expression for the solid shear viscosity is used (two dimensional version) 

/as* = ps*" sin ~b =/as*s. 

../(,o..s ,ous,-  
2 -~ \8---xx -8-y-yJ +\8-yy] +kaxjj+¼k-~y+8-xx 

[20] 

This derivation is valid if the solid volume fraction is constant and if the principal stresses of both 
tensors in [19] have the same direction. The first assumption is reasonable in the packed bed state 
of  particles (Es = es .... ); the latter was shown to be the case by Jackson (1983). 

In the very dilute region, the Lagrangian approach might be preferred to the Eulerian approach 
since it handles each particle separately. However, it is difficult to find a limit of  applicability for 
the approaches. The maximum number of  particles for the Lagrangian approach is limited by the 
computer power. For  example, a solid volume fraction of  Es = 0.01 means that about 15 × 107 
particles or groups of  particles per m 3 have to be tracked (ds = 0.5 mm). Concerning the Eulerian 
approach, Kuipers (1990) argued that at least 104 particles per volume are required for a statistical 
variation of  less than 1%. This leads to 

10'rc~ [21] 
ES.min - -  6 V ' 

For  the simulations discussed below (ds = 0.5 mm, typical cell size 0.01 × 0.01 x 1m3), ES.mi, 
becomes 6.5 × 10 -3. Another possibility is to consider that fluctuating motions of particles are 
limited by the surrounding walls. Thus, the diameter of  the apparatus can be regarded as the 
maximum mean free path. Gidaspow (1994) proposed a formula to calculate the mean free path. 
With this, one obtains 

1 ds 
Es,mi n 6 ~ / ' ~  dapp. [22]  

This equation gives Es,mm = 10 -4 for the geometry of the test case (dapp -- 0.57 m). Since [22] is 
independent of  the chosen cell size, it was decided to implement it into the code. If the local solid 
volume fraction obtained from the mass balances is below this limit, the result from [22] is used 
to calculate the solid phase properties. By means of  this simplification unrealistic results in the 
extreme dilute region can be avoided. 

2.3.5. Radial distribution function. The solid phase models discussed above are based on two 
crucial properties, namely the radial distribution function go and granular temperature ®s. The 
radial distribution function is a measure for the probability ofinterparticle contact. The model used 
in this paper was proposed by Ding and Gidaspow (1990). 

i L -1 

~E . . . . .  /] I 

It was developed with respect to collision rates investigated by Alder and Wainwright (1960). 
Alternative approaches (Carnahan and Starling 1969; Lun and Savage 1986; Balzer and Simonin 
1993) are discussed in Boemer el al. (1995). 

Modelling of the granular temperature is discussed in section 2.4. 
2.3.6. Verification of the solid pressure model. The experiments of Campbell and Wang (1991) 

can be used to verify the solid pressure model and to estimate the range of  granular temperature 
occurring in a bubbling fluidized bed. They used a differential pressure transducer to measure the 
solid pressure near the wall of  a 0.127 x 0.127 × 1.22 m 3 bubbling fluidized bed. Varying the solids 
density and diameter they found exactly what [14] predicts: no influence of  the diameter and a linear 
dependency on the solid density. The data depicted in figures 1 and 2 were obtained with glass 
beads (ps = 2440 kg/m 3, ds = 0.5 mm) similar to those used at the test cases described below. The 
solid pressure calculated according to [14] (including [23] with Cs . . . .  = 0.6) is plotted in figure 1. 
Campbell and Wang (1991) varied the solid volume fraction by changing the fluidizing velocity. 
Thus, the granular temperature was not constant in their measurements. At lower solid volume 
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Figure 1. Verification of the solid pressure model. 

fractions, the solid fluctuations and correspondingly the granular temperature can be assumed to 
be higher due to the higher gas velocity. The solid pressure increases both with the intensity 
(granular temperature), and with the number (solid volume fraction) of solids interactions. 
Comparing the results of the model with the measured data implies 10 -5 < ®s < 0.1 m2/s 2 to be 
a suitable range of granular temperature. As figure 1 shows, the granular temperature has a strong 
influence on the solid pressure level. Variations by four orders of magnitude are possible. 

To further verify the solid pressure model in the framework of the code, a complete simulation 
of one of the bubbling bed experiments of Campbell and Wang (1991) was performed 
(u0 = 0.4 m/s). A period of 10 s was simulated and an average of the last 9 s was used to compare 
with the experimental data. The models implemented in this simulation are those listed for test 
case 4 in table 1. The results are depicted in figure 2 and demonstrate reasonable agreement between 
the measured and calculated solid pressure near the wall. In the simulation, bubbles were observed 
to touch the sidewalls. Inside these bubbles, the solid pressure is much smaller than in the 
surrounding emulsion. Due to the short averaging time, these bubbles caused the scatter in the 
simulation results. However, both simulation and experiment show an increase of solid pressure 
with height caused by the solids fluctuating motion induced by the growing bubbles. 
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Figure 2. Solid pressure near the wall, 
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Table 1. Models used for the simulations 
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Test Granular temperature Shear viscosity Hydrodynamic 
case ®s /ts* model (see 2.1) 
1 Constant 10 -4 m2/s -' 
2 Constant 9 x 10 -3 m-'/s-" 

(mean value from test case 6) 
3 Algebraic formula [36] 
4 [25] with ko from 

Gidaspow et al. (1992), 
[30] and [31] 

5 [25] with ko from 
Balzer and Simonin (1993), 
[31] and [32] 

6 [25] with ko from 
Syamlal et at. (1993), [28] 

7 [25] with ko from 
Gidaspow et al. (1992), 
[30] and [31] 

Gidaspow et al. (1989), [16] 
Gidaspow et al. (1989), [16] 

Gidaspow et at. (1989), [16] 
Gidaspow et al. (1989), [16] 

Balzer and Simonin (1993), [17] 

Gidaspow et at. (1989), [16] 

A 
A 

A 
A 

A 

If Es < 0.59: 
Gidaspow et al. (1989), [16] 
If Es/> 0.59: 
soil mechanics [20] with limit: 
ps* < 1000 Pa. s 

8 Same as test case 7, but limit ps* < 100 Pa.s 
9 [25] with ko from Gidaspow et at. (1989), [16] B 

Gidaspow et al. (1992) 

2.4.  Solids f luc tua t ing  mot ion:  granular temperature  

The kinetic energy of  particles is propor t ional  to the square o f  their velocity. This velocity can 
be divided into a mean Vs and a fluctuating part  v~. The mean velocity is accounted for in the 
m o m e n t u m  balance. Similar to the treatment o f  turbulent gas flows, a model is necessary to account  
for the local instantaneous fluctuating velocity. This can be achieved by means o f  the kinetic theory 
o f  granular  flow. Equivalent to the thermodynamic  temperature for gases, the granular  temperature 
can be introduced to represent the energy associated with the fluctuating velocity o f  particles. 
Assuming isotropy of  the fluctuating motions  the kinetic energy of  the solid fluctuation can be 
formulated 

Es = ½ msv~ 2 --- 3 ms®s [24] 

with the particle mass ms and the granular  temperature defined by ®s = ½ v~ 2. Models to calculate 
the granular  temperature are discussed in the following subsections. 

2.4.1 .  Granular temperature  f r o m  par t ia l  dif ferential equation.  A balance o f  the solids fluctuating 
energy can be written as follows (see, e.g. Ding and Gidaspow 1990; Syamlal et al. 1993; Balzer 
and Simonin 1993) 

1( ) 3 ~ (esps®s) + V'(esps®s)Vs = -Ps*7 + ~ : Vvs + V ' ( k o V ® s ) - 7 0  + ~o .  [25] 

The left-hand side o f  [25] is the net change of  fluctuating energy. It is equal to the sum of  the right 
hand  side terms described below. 

The generation of  fluctuating energy by local acceleration o f  the particles is accounted for by 
the term (-ps*7 + ~) :  Vvs which includes solid pressure and the shear tensor ~ as defined by [4]. 

Diffusion of  fluctuating energy can be described in the usual way by a gradient o f  the granular  
temperature with a diffusion coefficient ko. The diffusion coefficient can be formulated for the dilute 
and the dense region. 

ko = ko,dilute + k®.dense. [26] 

In principle, the term ko.d,~u,e mainly accounts  for the kinetic part  o f  the diffusion coefficient, whereas 
ko.d .... is dominated  by the collisional influence. Similar to the shear viscosity description, the 
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equat ions for the diffusion coefficient p roposed  in li terature differ, a l though all o f  them are derived 
f rom kinetic theory. 

Lun et al. (1984) 

25 dspsx/~®s I i + ~ r / 2 ( 4 t / _ 3 ) e s g 0 1  [27] ke.dilo,e = T~ g0q(41 -- 33r/) 

ke.d .... -- ~ (41 -- 33~) l + ~ ~2(4t/ -- 3)~sg0 + ~ (41 -- 33t/)t/Esg0 [28] 

with the abbrevia t ion  

,7 = ~ (1 + e). [29] 

Syamlal  et al. (1993) employed this approach  but  neglected ke,dil ....  

Gidaspow et al. (1992) used an expression based on the work  of  C h a p m a n  and Cowling (1970) 

= '~ (1 + e)go 1 + 6 (1 + e)g0~s [30] 

ko,~ .... = 2Espsdsgo(1 + e) ® / - ~ .  [31] 

Balzer and Simonin (1993) also utilise [31] for the dense region, and for the dilute region they 
proposed 

ko.di,o,o- ~¢s s 1 + ]E~ps'( +e~d(49 - 33e) __  [321 

Note  that  the coefficient ko.d~,~,~ of  G idaspow et al. (1992) [30] includes collisional influences and, 
hence, goes to infinity for ~s --* es ........ whereas those of  Lun et al. (1984) [27] and Balzer and Simonin 
(1993) [32] are finite small values in case of  ~s = ~s ..... 

To  get an impression of  these approaches ,  the diffusion coefficients ko are plot ted in figure 3 
versus solid volume fractions for two granular  temperatures .  The particles are those of  the test case 
described below (ds = 0.5 mrp, ps = 2660 kg/m 3, e = 0.61), and go f rom [23] with Es .... = 0.6 is used. 
Fo r  the drag function fl required in [32], [8] with a constant  relative velocity of  ]v~ - Vsl = 1 m/s 
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Figure 3. Diffusion coefficient of  solids fluctuating energy. 
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was chosen. However, varying this relative velocity in the typical range has no significant influence 
on the results. Only in the very dilute region the diffusion coefficient becomes somewhat higher 
for higher relative velocities. As shown in figure 3, all diffusion coefficients increase with solid 
volume fraction and granular temperature. In the whole range of solid volume fraction, the 
approaches of Lun et al. (1984) and Gidaspow et al. (1992) give similar results. The difference 
between them gets even smaller if higher restitution coefficients e are used. Neglecting ko.d~°,~ 
(Syamlal et al. 1993) has the consequence of very low values in the dilute regime (ko ~ 0 for Es --* 0), 
whereas the equations of Lun et al. (1984) and Gidaspow et al. (1992) lead to finite values of ko 
for cs ~ 0. However, in the very dilute regime, the solid phase is no more dominated by kinetic 
and collisional influences but by the interaction with the gas phase. This is taken into account by 
Balzer and Simonin (1993) who included the drag function ft. Furthermore, the gas phase 
turbulence may play a major role in the dilute regime if the particles are small enough. In case 
of low solid volume fractions it may increase/co considerably. However, as discussed above, in case 
of extremely low solid concentrations the Eulerian approach is questionable in general. Higher solid 
volume fractions damp gas phase turbulence (Mih 1993; Yang et al. 1993) and in bubbling fluidized 
beds its effect can surely be neglected. 

It is difficult to decide which approach is the most appropriate without having special 
measurements. There are theoretical arguments for all of them. Results of the approaches of 
Gidaspow et al. (1992), [30] and [31], and of Balzer and Simonin (1993), [31] and [32], are discussed 
in section 3.2. 

The dissipation of fluctuating energy can be described (Jenkins and Savage 1983) 

2 2 /4 ~ V'vs). 7o = 3 (1-e),sPsgo®s~-ffs s 4 - ~ - ~ -  [331 

Lun et al. (1984), and later Syamlal et al. (1993) and Balzer and Simonin (1993) neglected the 
term V'Vs. It may lead to negative dissipation and is neglected in the present investigations, too. 
A restitution coefficient e = 1 has the meaning of an elastic collision without loss of kinetic energy, 
hence the dissipation becomes zero. With the radial distribution function [23] the dissipation goes 
to infinity in case of dense packing (Es --* Es .... ). 

The exchange of fluctuating energy between gas and solid phase is usually calculated according 
to Ding and Gidaspow (1990) 

• o = - 3fl®s. [34] 

It accounts for the loss of granular energy due to friction with the gas. 
This partial differential equation for granular temperature [25] has the same form as, e.g. the 

mass and momentum balances and can be numerically solved in the same way (see, e.g. Patankar 
1980). However, since this procedure requires considerable additional CPU power, a simpler 
alternative is investigated and described in the next subsection. 

2.4.2. Algebraic" formula for  granular temperature. Instead of solving the complete differential 
equation [25], an algebraic expression proposed by Syamlal et al. (1993) can be used. They assumed 
local equilibrium between generation and dissipation of fluctuating energy. Thus, [25] becomes 

0 = ( - ~ s  + ~s): Vvs - 70. [35] 

With [4], [14]-[16] and [33], [35] can be written ( )2 
--(K, Es + + ps)2'tr2(ffs)+4K4es [2K3'tr (~s)+ K2.tr2(Fs) ] 

®s = - 2EsK, [36] 

=j ps)'tr (Ds)+ (K, Es 
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with the abbreviations 

K, = 2(1 + e)psg0 [371 

4 
K~ = ~ ,t~p~(1 + e ) ~ g ,  - ~ K~ [381 

3 x/"n 

dsps  x~ l+~(l+e)(3e-1)~go + - - g o ( l + e )  
~ = ~ - -  3(3 - e) 5 , f ~  

K4 = 12(1 -- e2)psgo 

[39] 

[40] 

Equation [36] is slightly different from the original one used by Syamlal et al. (1993) because it 
includes the kinetic part of the solid pressure. The kinetic part  of  the shear viscosity in [16] has 
to be neglected in order to get an algebraic equation. Granular  temperature from [36] depends 
strongly on the local solid velocity gradients included in the strain rate tensor. Since it may go to 
infinity for cs ~ 0, an upper limit has to be fixed. For ~s --' ~s ....... the granular temperature may 
become very small, so a minimum value is reasonable to avoid zero solid pressures and viscosities. 
A suitable range for the granular temperature is discussed in the next subsection. 

2.4.3. Typical range qf granular temperature. For bubbling fluidized beds, there exist no 
measured data of  solids fluctuating energy. Obviously it is not possible to measure reliable data 
in a dense suspension. In circulating fluidized beds, the solids loading is much smaller and some 
data are available. Yang et al. (1993) measured RMS solids velocity fluctuations up to v; = 1.4 m/s 
(®s = 0.65 m2/s 2) with a superficial gas velocity of u0 = 4.3 m/s. Pita and Sundaresan (1991) found 
values up to nearly 400 m2/s -' with gas velocities up to 20 m/s. Due to the higher gas velocities, the 
considerable influence of the gas turbulence, and the smaller and lighter particles in circulating 
fluidized beds, these values are higher than those to be expected in bubbling fluidized beds. 

Moseley and O'Brien (1993) assumed the excess fluidization energy to cause the solids fluctuating 
motion. They proposed a formula for the average granular temperature of  a bubbling fluidized bed 

~ s  = ~ k,p(~ (u~,- Urn,)-'. [411 
Csps 

The factor k~ is the fraction of excess fluidization energy going into solids fluctuation energy. The 
choice of  k~ is arbitrary without detailed measurements but crucial for the results. Since k~ is defined 
between 0 and 1, this formula results in 0 < Os < 1.7 x 10- s m2/s 2 for the test case described below 
(gas density pc; = 1.276 kg/m 3, solid density ps = 2660 kg/m 3, superficial gas velocity u0 = 0.507 m/s, 
minimum fluidization velocity Umt=O.26m/s, minimum fluidation soli_d volume fraction 
~s = cs.mf = 0.598). Moseley and O'Brien (1993) used k~ = 0.0326 which gives Os = 5.4 x 10 -7 m2/s 2 
in this case. Howe_yer, during operation the mean solid volume fractions will be lower and cause 
higher values of  Os. In case of es --* 0 the granular temperature [41] goes to infinity. 

Combining these findings with the conclusions drawn in section 2.3.6 from experiments of  
Campbell and Wang (1991), the typical range of granular temperature occurring at bubble 
formation processes as regarded here is 10 5 < Os < 0.1 m2/s 2. This range agrees with the values 
estimated by Balzer and Simonin (1993). Hence, these limits are applied to the simulations discussed 
below. 

3. S IMULATION 

3.1. Solution procedure 

In a cooperation between the Lehrstubl ffir WO, rmefibertragung und Klimatechnik in Aachen, 
Germany,  and F L U E N T  Europe Ltd in Sheffield, U.K., a computer code is being developed to 
solve the equations discussed above. Following the suggestion of Syamlal and O'Brien (1989), the 
solid phase is treated as a compressible fluid in case of  es < ~s .... and incompressible if 
~s = ~s ...... = 0.6. The dependence ~s = f(ps) is treated like the dependency PG = f (p)  in compressible 
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Figure 4. Time averaged (0-2 s) granular temperature. 
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gas flows (see Patankar 1980). The differential equations are solved implicitly with a T D M A  solver. 
An extension of  the SIMPLE scheme of  Patankar (1980), called SIMPLE-PEA has been chosen. 
PEA stands for Partial Elimination Algorithm and was introduced by Spalding (1980). Static 
pressure correction is executed with a mass balance of  the gas phase and a similar solid pressure 
correction with that of the solid phase. The result of this solid pressure correction is taken to correct 
the solid velocity, the solid volume fraction, and the fluxes through the cell faces. The solid pressure 
is calculated by [14], except if Es .... is going to be reached, in this case the result of  the solid pressure 
correction is used for the solid pressure, too. Thus, further flow of  particles into a filled cell is 
terminated and a solid volume fraction higher than Es .... is avoided. Solid volume fractions are 
obtained by means of  a combined mass balance of both phases. To avoid numerical problems, the 
result is limited to a value of  ES.n,i, = 10 -6. At the present stage of development, turbulence modelling 
of  the gas phase neglects the influence of  particles. 

3.2. Test cases 

Experimental investigations of the bubble formation at a jet within a fluidized bed by Kuipers 
(1990) can be used to verify the results of the simulation. These were carried out on a 
two-dimensional test rig of 0.015 × 0.57xl m 3 size. In the centre, a jet with an outlet velocity of 
10 m/s was introduced through a rectangular mouth of  0.015 × 0.015 m z. The rest of the bed area 
was fluidized with its minimal fluidization velocity of 0.25 m/s. The device was filled up to a height 
of 0.5 m with glass beads (500 ktm, 2660 kg/m3). A symmetry plane assuming no crossing mass 
fluxes has been applied at the centreline to minimise calculation time. This domain has been divided 
into 31 × 80 computational cells. No significant difference was found at a test-calculation with a 
doubled grid. Near the wall and in the jet region the grid spacing has been refined. At the walls, 
no-slip boundary condition has been applied for both phases (Dirichlet boundary condition), 
whereas at inlet and outlet zero-gradient boundary conditions (Neumann boundary condition) have 
been used. Both the jet and fluidization inflow are free of particles. Turbulence of the gas phase 
is neglected. The average calculation time was about 8 h on a HP 737 workstation for 0.I s of 
simulation. 

According to Geldart (1973), the particles used here belong to group B, close to group D. This 
means, formation of  large spherical bubbles can be expected to start immediately after the 
minimum ftuidization velocity is exceeded. The formula of Grace and Lim (1987) predicts a 
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permanent jet if the orifice diameter is smaller than 25.4 times the particle diameter, In the setup 
regarded here, this ratio is equal to 30 which means bubbles will occur. 

An overview of the performed simulations is given in table 1. 
Calculated granular temperatures from different models are compared in figure 4. In the dense 

region in the bottom corners, high collision rates cause strong dissipation of fluctuating energy, 
and all models reach the minimum granular temperature limit. The maximum is reached at the 
splash zone and near the gas jet, where strong acceleration generates fluctuating energy. Near the 
walls, where the velocity gradients are high, all simulations predict a small region with a solid 
volume fraction slightly lower than ~s ...... and a granular temperature above the lower limit. Due to 
interpolation and the limited number of filled contours, this region is visible only for test cases 4 
and 5. 

If the transport of fluctuating energy is neglected, as done in test case 3 by applying the algebraic 
formula [36], distinct local extrema of the granular temperature are found. These spots are smeared 
by the various transport phenomena accounted for in test cases 4, 5 and 6 by the partial differential 
equation [25]. In the plot of test case 3, the horizontal border between high and low granular 
temperatures at the initial bed surt:ace is due to high granular temperatures during the first 0.5 
seconds of the simulation caused by high velocity gradients at the bed surface. This effect can be 
observed at all the test cases, but the high granular temperatures do not occur in test cases 4, 5 
and 6 since, again, the high amount of fluctuating energy produced by the velocity gradients is 
transported- by diffusion and thus smeared. 

Test cases 4 and 5 give nearly identical results. Obviously the approaches of Gidaspow et al. 
(o1992) and Balzer and Simonin (1993) are similar under these conditions. The only difference 
between test case 4 and 6 is the neglection of the first diffusion coefficient ko.d~ut~ ([27], compare 
figure 3) in test case 6. This term accounts for diffusion of fluctuating energy from the splash zone 
into the very dilute freeboard region. Since the granular temperature is the fluctuating energy per 

6 0  % Solid Volume Fraction 0 

_ 

I 
Test Case 1 

I 
Test Case 2 

I 

Test Case 3 

?. • 

' I 
Test Case 6 

I 
Test Icase 8 

Figure 5. Solid volume distribution 0,4 s after starting the jet for different test cases (parameters see 
table 1). 
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Figure 6. Time-averaged solid volume fractions at different distances from the centerline, variation of 

granular temperature models. 

mass of particles, it becomes very high there. As will be discussed below, these high values have 
no significant effect on the overall results. 

3.2. I. Qualitative verification. The solids distribution 0.4 s after starting the jet is depicted in 
figure 5. The photo of  Kuipers (1990) can be compared with the calculated solid volume fractions. 
The first simulation (test case 1) was performed with an estimated constant value of 
®s --- 10 -4 mZ/s 2. The result looks reasonable, but such a simulation depends strongly on the chosen 
value. Other calculations with a value of ®s = 9 x 10 -3 m-'/s 2 (test case 2), which is the average of 
the granular temperatures obtained in test case 6, or with ®s --- 10 -5 m2/s 2 (not shown in figure 5) 
gave completely unrealistic solid distributions. Except these, all other simulations show a bubble 
shape similar to that measured by Kuipers (1990). All simulations predict a slightly lower bed height 
compared to the photograph. This could be due to small bubbles (visible on the right-hand side 
of the photo) caused by unavoidable small asymmetries in the experimental setup. Furthermore, 
a lower value than the assumed maximum solid volume fraction, Es .... = 0.6, would automatically 
increase the calculated bed height. In the photo, the second bubble is already visible at t = 0.4 s. 
Test cases 1, 4 and 5 agree with this observation, at the other test cases it is formed a little later. 
Test cases 7 and 8 predicted a somewhat leaner bubble compared to the others. This is due to the 
higher shear viscosity coming from the frictional approach [19]. No difference is found between 
the images of test case 7 and 8 which shows that the choice of  the maximum limit of the shear 
viscosity coming from the soil mechanics model is not crucial. Concerning the shape of the first 
bubble, the two Hydrodynamic Models A (test case 4) and B (test case 9), presented in section 
2.1, give similar results. Furthermore, neglecting the term for the dilute region in the fluctuating 
energy diffusion coefficient, as proposed by Syamlal et al. (1993) shows no significant effect (cf. 
test cases 4 and 6). However, test cases 4 and 5 with the approaches of  Gidaspow (1992) and Balzer 
and Simonin (1993), respectively, predict the bubble shapes that agree best with the experimental 
observation. 

3.2.2. Quantitative verification. Kuipers (1990) additionally measured the time-averaged local 
solid volume fraction by means of  an optical probe. The time of averaging was 60 s, whereas only 
2 s were simulated due to the high computation cost. 

A variation of the three granular temperature models (constant, algebraic expression, partial 
differential equation) is depicted together with these measurements in figure 6. Test cases 5 and 6 
are not depicted in this figure. Their results are similar to those of test case 4, which once more 
indicates that ko.d,o~0 can be neglected in this bubbling bed case (Syamlal et al. 1993). For  all the 
cases considered, experiment and simulations give similar results. A clear influence of the granular 
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temperature model is found only in the centre of the apparatus. This is due to the high solid volume 
fraction in the bed which causes dissipation of fluctuating energy down to the minimum value, 
regardless of  the chosen model. Test case 1 shows that a constant granular temperature of 
®s = 10 4 m2/s 2 is a good choice in this case. As already concluded from figure 5, the chosen 
maximum solid volume fraction of 0.6 seems to be too high. At most of the locations, the predicted 
solids concentration in the bed is higher than the measured one. 

Compared to the data measured 0.4 cm from the centreline, in all three simulations the particles 
are splashed too high into the freeboard. Especially test case 1 leads to unrealistic results. This 
problem has also been observed by Gamwo et al. (1995), who called it the "fountain problem" 
and proposed to use Hydrodynamic Model B instead of the usual Model A (see chapter 2.1) to 
overcome it. This model is tested in test case 9. Another possibility to overcome the fountain 
problem is to consider interparticle friction in the dense region by using the shear viscosity [20] 
from solid mechanics. This model is engaged in test cases 7 and 8 for solid volume fractions higher 
than 0.59. In this state, the solid pressure may be very high, which leads to high viscosities. Test 
case 8 is not depicted in figure 7 since its results are identical to those of  test case 7. In fact these 
two models predict a drastic decrease of the solid volume fraction at a certain height, as visible 
in figure 7. Due to the strong shear forces obtained from the frictional approach (test case 7), the 
particles are hindered in leaving the bed. In the bed region, 3.4 cm from the centreline, the results 
obtained with this model come closer to the measured data than any other. 

Utilization of Hydrodynamic Model B (test case 9) instead of Model A (test case 4) is not only 
a numerical, but also a physical modification. Looking at the momentum balances (see [2], [3] and 
[6], [7] in section 2.1), one can see that Model A and B would be identical if 

- V p  = ~ (v~ - Vs). [42] 

However, this is not true in this case. Especially in the fountain region, the pressure term in the 
vertical formulation of [42] is significantly higher than the corresponding drag term. Hence, if one 
takes the hydrostatic pressure gradient out of  the solid phase momentum balance and instead 
increases the drag term, as done in Model B, the forces carrying particles into the freeboard are 
artificially decreased. Although theoretically the hydrostatic pressure is identical in both phases and 
hence Model A is physically more correct than Model B, the latter is able to predict results closer 
to the experiments for the present situation. A modification of the drag function fl to account for 
non-homogeneous distribution of particles in a computational cell might overcome this problem. 

+ Experiment Kuipers (1990) 

. . . . . . . . .  Simulation with viscosity from frictional approach (Test Case 7) 

Simulation with Hydrodynamic Model B (Test Case 9) 
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Figure 7. Time-averaged solid volume fractions at different distances from the centerline, proposals to 
overcome the fountain problem. 
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Figure 8. Process of bubble eruption, test case 7. 

Kuipers  (1990) successfully s imula ted  the same test case with Mode l  A, cons tan t  viscosities, and  
an empir ica l ly  der ived elastic modu lus  ins tead o f  solid pressure.  Such a model  is s imilar  to the 
p rocedure  descr ibed  above  with a cons tan t  g ranu la r  t empera tu re  (test cases 1 and 2, see table  1). 
Since it tu rned  out  that  a good  guess o f  that  g ranu la r  t empera tu re  value is crucial  for the results° 
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it can be assumed that the choice of the empirical formula for the elastic modulus and that of the 
value of solids shear and bulk viscosity have a strong influence on the results. 

As an example, the complete process of bubble eruption is shown in figures 8 for test case 7. 
After the ascend of the first big bubble shown also in figure 5, the downflowing particles near the 
walls impede the growth of the following bubbles. Hence, the second and all following bubbles 
are leaner and faster that the first one, This was observed both in the simulations and the 
experiment. 

4. CONCLUSIONS 

In the frame of the Eulerian approach, physical models derived from the kinetic theory of granular 
flows are able to describe the bubble formation process in fluidized beds. Comparisons with 
measurements show good agreement. 

The description of the fluctuating energy in terms of the granular temperature is the basis of 
the solid phase models. Although a good guess of a constant granular temperature may lead to 
acceptable results, the algebraic formula [36] should be preferred. Theoretically, solution of the 
complete partial differential equation [25] gives the most accurate results, but in case of dense beds 
the resulting flow patterns are similar to those calculated with the algebraic equation. 

Concerning the values needed to limit the granular temperature, a range of 10 5 < ®s < 0.1 m-'/s 2 
was found for bubbling fluidized beds. 

An approach derived from solid mechanics to account for interparticle friction, [20], is favourable 
in the very dense regime. It can keep particles from splashing too high into the freeboard. The 
maximum limit of [20] was found to have no significant influence on the overall results. 
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JOU2-CT94-0452. 
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